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A combination of the breathing Fermi-surface model with a variant of the ab initio density-functional
electron theory given by the magnetic force theorem is used to establish a unified theory for the near-adiabatic
magnetization dynamics on the atomic scale. The main achievement of the theory is that it makes possible to
treat both collinear as well as noncollinear magnetization configurations on equal footing. The theory yields an
equation of motion of the type of the widely used Gilbert equation, however, with the constant Gilbert damping
scalar replaced by an anisotropic and nonlocal damping matrix. The range of validity of the theory is discussed.
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In recent years, the ultrafast magnetization dynamics in
magnetically ordered materials has been studied very exten-
sively, both experimentally and theoretically.1–9 From the
viewpoint of fundamental research, this issue is very de-
manding because the coupling of the electronic system to the
lattice has to be taken into account for dissipative spin dy-
namics. Technologically the issue is also of great importance
for ultrafast switching of magnetic devices often formed by
nanostructured systems. It has become customary to subdi-
vide the phenomena into those which appear for time scales
of say more than several picoseconds and those on the sub-
picosecond to femtosecond time scale. For the first situation
�near-adiabatic situation� it is assumed that the electronic
system is always close to its ground state with respect to the
momentary magnetization configuration. Examples include
the dynamics of domain walls9 or the field- or current-
induced magnetization dynamics in nanostructures.1,9 For the
second situation, strong electronic excitations from these
ground states have to be taken into account, and an example
is the ultrafast demagnetization by femtosecond2 lasers. A
first attempt to unify the phenomena on these two time scales
was made by Koopmans et al.3

In the present Rapid Communication, we consider the first
of the above discussed situations. Experiments on that time
scale may be subdivided into those with a homogeneous col-
linear magnetization �such as the switching of small particles
by coherent rotation or ferromagnetic resonance experi-
ments� and those which involve nonuniform noncollinear
magnetization configurations �such as domain walls or vorti-
ces�. One very successful model for the explanation of dis-
sipative magnetization dynamics on that time scale is the
breathing Fermi-surface model introduced by Kamberský4

already in 1970 and recast for collinear magnetization into a
form which can be used in the ab initio density-functional
theory much later.5,6 In Ref. 7 a breathing Fermi-surface
model for noncollinear situations has been suggested, be-
cause of the overwhelming importance of noncollinear mag-
netization configurations in technologically relevant mag-
netic devices, and because it is expected that the damping is
much larger than in collinear systems �see below�. The strat-
egies to realize the breathing Fermi-surface model in the
framework of the density-functional theory were, however,
substantially different for collinear and noncollinear situa-
tions and therefore it is not clear whether the two situations

were described on equal footing. Furthermore, in the former
papers on the ab initio breathing Fermi-surface model, the
orientations of the magnetic moments were prescribed only
approximately via the local spin-quantization axes of the
atomic-sphere approximation for the spin direction �spin
ASA�, and this is a good approximation for systems with
weak noncollinearity and strong exchange-correlation fields
only. In the present Rapid Communication, a unified ap-
proach will be presented which allows treating both situa-
tions on equal footing, and this is the main achievement of
the unified theory. Furthermore, it refrains from the use of
the spin ASA so that it can be applied also to the strongly
noncollinear systems which appear frequently in modern
nanoscale systems. This approach can serve as a general and
firm basis for the discussion of near-adiabatic dissipative
magnetization dynamics. The theory will predict an equation
of motion �EOM� for atomic magnetic moments with an an-
isotropic and nonlocal damping term.

For a complete quantum-mechanical description of mag-
netization dissipation, i.e., of the transfer of angular momen-
tum and heat from the electronic spin systems to the lattice,
one had to start from the time-dependent wave equation for
electrons and nuclei, involving spin-orbit coupling which
mediates this transfer. Instead, we will describe the situation
by an effective single-electron theory that involves only elec-
trons and that describes the transfer empirically via scattering
of electrons and a relaxation-time ansatz for the development
of the electronic occupation numbers in time. Furthermore,
for a near-adiabatic situation we consider only the slow mag-
netic degrees of freedom on a time scale which is larger than
the inverse of the frequency � of a typical long-wavelength
spin wave. Then it is customary to define8,10 atomic magnetic
moments MR=MReR at the atomic sites R with magnitudes
MR and orientations eR by integrating the electronic spin
magnetization m�r , t� over the atomic sphere at site R, re-
spectively, and by averaging over the time 1 /�.

In a strictly adiabatic situation, the electronic scattering
processes are so frequent that the electronic system follows
the configuration �eR�t�� of all magnetic moments adiabati-
cally, i.e., it is always in its ground state with respect to the
momentary configuration. Then it is possible to introduce
�e.g., by the solution of the Kohn-Sham equations of the
electronic density-functional theory for prescribed11 direc-
tions eR� adiabatic single-electron energies �i��eR�t���, the
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adiabatic Fermi-Dirac occupation numbers f i��eR�t���, and an
adiabatic Fermi surface S��eR�t���. When the orientational
configuration changes in time, then this Fermi surface will be
modified �breathing Fermi surface4�. For a collinear magne-
tization, eR�t�=e�t�, S�e�t�� changes in time because the �i
depend on e�t� via the spin-orbit coupling. In a time-
dependent noncollinear situation, the �i change in addition
because of the interatomic exchange interactions arising12 in
the density-functional theory from the dependence of the ki-
netic energy of the electronic system on �eR�t��. Because
these kinetic-energy interactions in general are much stron-
ger than the spin-orbit interactions, stronger changes of the
adiabatic Fermi surface can be expected for systems with
time-dependent degree of noncollinearity. For the strictly
adiabatic situation, quantum-mechanical arguments �see,
e.g., Ref. 8, and references therein� yield the EOM

deR

dt
= −

2�B

�

1

MR

�E

�eR
� eR = − �eR � Heff,R, �1�

with the total energy E and �=−2�B /�. This EOM looks like
a Gilbert equation without the damping term, i.e., in the
strictly adiabatic situation, there is no damping at all.

To introduce damping, we abandon the notion that the
electronic systems is at any instant in its ground state with
respect to the �eR�t��. To do this for a situation close to the
adiabatic limit, the breathing Fermi-surface model4–8 uses a
concept very similar to the one of the Drude theory of con-
ductivity. The basic idea is to keep the adiabatic single-
electron energies �i��eR�t���, but to replace the adiabatic oc-
cupation numbers f i��eR�t��� by nonadiabatic occupation
numbers ni�t�. The reason is that a change of the Fermi sur-
face S��eR�t��� requires electronic scattering processes and
these scattering processes do not take place infinitely fast �as
it has been assumed for the strictly adiabatic situation� but
require finite time. This is accounted for by a relaxation-time
ansatz,

dni�t�
dt

= −
1

�i
�ni�t� − f i��eR�t���� . �2�

With the further approximation �i=� for all i, and for the
case of a near-adiabatic situation where the characteristic
time scale for the dynamics of the eR�t� is much larger than
�, the solution of Eq. �2� may be approximated by

ni�t� = f i�t� − �
dfi�t�

dt
+ . . . . �3�

For the derivation of an EOM for the near-adiabatic time
scale, we start from Eq. �1� and try to represent �E /�eR by
single-electron energies �i��eR�t��� and occupation numbers
f i��eR�t��� which we then can replace in the spirit of the
breathing Fermi-surface model by the nonadiabatic occupa-
tion numbers ni�t� of Eq. �3�. To achieve this we use a
method closely related to the magnetic force theorem in the
variant by Bruno,13 which is an application of the Harris-
Foulkes functional14 to the magnetic system with the orien-
tations of the atomic magnetic moments at sites R prescribed
by Lagrangian fields BR

	 .
We start by prescribing an initial orientational configura-

tion �eR
0 �. The fields BR

	,0 which generate these directions of
the moments are determined self-consistently11 by a density-
functional calculation. This calculation yields in addition the
initial self-consistent spin-density matrix


��
0�r� = n0�r�1�� + m0�r�e0

m�r� · �= . �4�

Here n0�r� is the particle density, m0�r�=m0�r�e0
m�r� denotes

the continuous spin density with the continuous orientation
field e0

m�r� �not to be mixed up with the eR
0 �, 1�� is the unity

matrix, and �= represents the vector of Pauli matrices. Fur-
thermore, the calculation yields the effective potential matrix
W�� �
��

0 ;BR
	,0�, the single-electron eigenvalues �i�W�� �
��

0 ;BR
	,0��,

the corresponding occupation numbers f i
0, and the total en-

ergy E�
��
0 ;BR

	,0�.
In a second step we prescribe a slightly different new

orientational configuration,

�eR� = �eR
0 + �eR� = �RR · eR

0 � , �5�

with the local rotations RR�SO�3� at sites R. In a second
density-functional calculation we then determine again in a
self-consistent manner the Lagrangian fields BR

	 which are
required to generate the new directions �eR�. The only scope
of this second self-consistent calculation is the determination
of the numerically exact fields BR

	 . We do not make use of
the self-consistently determined energy E�
�� ;BR

	 � which

would enable us to calculate numerically the difference �E
=E�
�� ;BR

	 �−E�
��
0 ;BR

	,0� but would not allow us to introduce

the breathing Fermi-surface model.15 For the following, we
consider the Lagrangian fields BR

	,0 and BR
	 as external fields

BR
0 and BR, and we calculate the energy difference between

the two configurations by the extended Harris-Foulkes ap-
proach described by Bruno �Ref. 13�.

To do this, we construct an input spin-density matrix


��
in�r� = n0�r�1�� + m0�r��RR · e0

m�r�� · �= , �6�

i.e., we rotate the initial spin density within the atomic
spheres at sites R by the rotation matrix RR defined above.
We then solve the Kohn-Sham equation for the fixed poten-
tial matrix W�� �
��

in ;BR� constructed from 
��
in and BR, yielding

the single electron energies �i
HF�W�� �
��

in ;BR�� and the corre-

sponding occupation numbers f i
HF= f��i

HF�. Following the ar-
guments of Bruno,13 the energy difference �E then is calcu-
lated by use of the Harris-Foulkes functional14 EHF

generalized to noncollinear magnetic systems,13 yielding

�E = EHF�
��
in;BR� − E�
��

0;BR
0 � + O2��nin,�min�

= �
i

f��i
HF��i

HF�W�� �
��
in;BR�� − �

i

f��i��i�W�� �
��
0;BR

0 ��

+ O2��nin,�min� . �7�

In Eq. �7�, �Xin with X=n ,m are the differences between the
input quantities according to Eq. �6� and the corresponding
quantities which would be obtained by a self-consistent cal-
culation for the �BR�.

The f��i
HF� and �i

HF depend on the configuration �5�. Per-
forming a Taylor expansion of these quantities, neglecting
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terms of O2��eR�, and taking into account �i
HF��eR

0 ��
=�i��eR

0 �� yields

�E = �
i

f i���i
HF

�eR
�

eR
0

· �eR + �
i
�� f i

�eR
�

eR
0

· �i��eR
0 ���eR. �8�

Assuming that changes of the f i due to orientational changes
occur only for states close to the Fermi level �F yields for the
last term of Eq. �8�

�F�
i

�f i = 0, �9�

where we have used in Eq. �9� that the total number of states
is conserved. With �E /�eR=��E /��eR, we then obtain

�E

�eR
= �

i

f i� ��i
HF

�eR
�

eR
0

, �10�

where the derivative can be calculated numerically from
�with �i

HF��eR
0 ��=�i��eR

0 ���

� ��i
HF

�eR
�

eR
0

= lim
�eR→0

�i
HF��eR

0 + �eR�� − �i��eR
0 ��

�eR
. �11�

Following the general approach of the breathing Fermi-
surface model, the EOM for the near-adiabatic situation can
be obtained by inserting Eq. �10� into Eq. �1� and replacing
the adiabatic occupation numbers f i by the nonadiabatic oc-
cupation numbers ni of Eq. �3�. Finally, the chain rule is
used,

dfi

dt
=

� f i

��i
�
R

��i

�eR

deR

dt
, �12�

yielding the fundamental result

deR

dt
= − �eR � Heff,R��eR��� + eR � �

R�

AR,R���eR��� ·
deR�

dt
,

�13�

Heff,R��eR��� =
1

MR
�

i

f i

��i
HF

�eR
, �14�

1

�
AR,R���eR��� ·

deR�

dt
= −

�

MR
�

i

� f i

��i

��i
HF

�eR

��i
HF

�eR�
·

deR�

dt
.

�15�

It should be noted that the second term of Eq. �13� can be
decomposed into a relaxation torque and a term modifying
the precession.6 Equation �13� has the general appearance of
a Gilbert16 equation, with a term describing the precession in
an effective field Heff,R and a damping term, however, with
the damping constant � appearing in the Gilbert equation
being replaced by damping matrices AR,R���eR��� which de-
pend on the orientational configuration �eR�� of the whole
system because the ��i

HF /�eR depend on the configuration.
For a collinear situation, this means an anisotropic damping,
i.e., A depends on the orientation of the magnetization in the

system, as has been shown explicitly numerically5,6,8 �with a
slightly different calculational method� for bulk Fe, Co, and
Ni. For monatomic layers and wires of these materials, there
are even orientations for which the damping vanishes.6,8 For
a noncollinear situation it means that the damping is in ad-
dition nonlocal. This is certainly relevant for strongly non-
collinear systems like narrow domain walls17 or vortices,1

where we expect stronger damping than for collinear situa-
tions because the ��i

HF /�eR are larger �see above�. It is well
known for a long time that the effective field Heff,R �which
also contains the ��i

HF /�eR� is both anisotropic �described in
a micromagnetic theory by the magnetocrystalline anisotropy
energy� and nonlocal �described by the micromagnetic ex-
change energy�, whereas for the damping these two features
have often been overlooked so far.

As a confirmation of the expectation of stronger damping
in noncollinear systems, we calculate the matrix A /� for a
noncollinear configuration in hcp Co. The directions �eR� of
the two atomic magnetic moments in the unit cell enclose
an angle of 2° or of 5°. Typical angles between nearest-
neighbor moments in domain walls of uniaxial materials are
2° for a 180° Bloch wall in Co or 3° �5°� for a 180° Néel
wall in Co �Pr2Fe14B�. The derivatives �11� are only deter-
mined by interatomic exchange because spin-orbit coupling
was switched off in this calculation. For symmetry reasons
only one eigenvalue �̃ of A is nonzero. We get
�̃�B

2 MR /�2��	11·1020 s−2 �65·1020 s−2� for an angle of
2° �5°�, where the value for 5° is about one order of magni-
tude larger than the value obtained for a collinear configura-
tion in this system with spin-orbit coupling.6,8

Equation �15� shows that the damping is proportional to �
and hence to the conductivity. Experimentally18 this propor-
tionality has been found for single crystals of Ni at low tem-
peratures T, whereas at high T a proportionality of � to the
resistivity 
=1 /

� has been observed. According to Refs.
8 and 19, it is expected that the contribution A

 arises
from intraband transitions for which the breathing Fermi-
surface model holds and which dominate at low T whereas
the contribution A

 is related to interband transitions
which are not accounted for by the model. �For a theory of
the temperature dependence of damping, see Ref. 19.� Ac-
cordingly, there are strong hints20 that for Ni at low T the
damping is anisotropic �whereas for Fe and Co no observa-
tions in this direction have been reported so far�. All the
considerations of the paragraph are for collinear situations.
Because in our theory, the damping matrix is proportional to
� both for collinear and noncollinear situations, we assume
that in both situations, the theory is valid only as long as
intraband transitions dominate, i.e., at low T.

To conclude, we managed to unify the breathing Fermi-
surface model of magnetization damping for collinear as
well as for noncollinear magnetization configurations. It ap-
pears that in this model the damping is both anisotropic and
nonlocal, in contrast to the isotropic and local Gilbert damp-
ing.
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